Abstract
Increased yield can be achieved by optimising the growth environment, improving the plant gene pool, or a combination of the two. This study’s objective was to evaluate the effect of combined heat and water stress (CHWS) on maize yield, grown in various soil conditions. The experimental design was a four-replicated 3 × 3 × 2 × 3 factorial in a completely randomized design. Three water stress levels, three soil amendments, two soil textural types, and three drought-tolerant maize varieties were combined to create 54 treatment interactions. The result showed that as the severity of the water stress increased, the yield decreased. The near terminal water stress reduced cob weight, grain weight, and grain number by 96, 97, and 97%, respectively. The maize varieties were ranked WE5323 ≥ ZM1523 > WE3128 in terms of average performance and stability. Under heat and moderate water stress, the poultry manure amendment performed well for WE5323 and ZM1523, while the mineral fertilizer amendment performed best for WE3128. Compared to the inorganic amendment, the organic had a greater ameliorative capacity for grain yield under CHWS. For improved grain yield under CHWS, farmers are advised to grow WE5323 and ZM1523 with organic amendments. The findings in this study could improve food security strategies for low-income households living in high-stress environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.