Abstract

MEPS Marine Ecology Progress Series Contact the journal Facebook Twitter RSS Mailing List Subscribe to our mailing list via Mailchimp HomeLatest VolumeAbout the JournalEditorsTheme Sections MEPS 617-618:95-112 (2019) - DOI: https://doi.org/10.3354/meps12574 Variation in life-history traits of European anchovy along a latitudinal gradient: a bioenergetics modelling approach Martin Huret1,*, Kostas Tsiaras2, Ute Daewel3, Morten D. Skogen4, Paul Gatti1, Pierre Petitgas5, Stelios Somarakis6 1Ifremer, STH/LBH, 29280 Plouzané, France 2Hellenic Centre for Marine Research, Anavyssos, Greece 3Helmholtz Centre Geesthacht, Institute of Coastal Research, 21502 Geesthacht, Germany 4Institute of Marine Research, 5817 Bergen, Norway 5Ifremer, EMH, 44311 Nantes, France 6Hellenic Centre for Marine Research, Heraklion, Greece *Corresponding author: martin.huret@ifremer.frAdvance View was available online July 17, 2018 ABSTRACT: Anchovy Engraulis encrasicolus distribution in European waters spans from the Mediterranean Sea to the North Sea, and is expected to expand further north with global warming. Observations from the eastern Mediterranean (North Aegean Sea), the Bay of Biscay and the North Sea reveal latitudinal differences in growth, maximum size, fecundity and timing of reproduction. We set up a mechanistic framework combining a bioenergetics model with regional physical-biogeochemical models providing temperature and zooplankton biomass to investigate the underlying mechanisms of variation in these traits. The bioenergetics model, based on the Dynamic Energy Budget theory and initially calibrated in the Bay of Biscay, was used to simulate growth and reproduction patterns. Environment partly explained the increased growth rate and larger body size towards the north. However, regional calibration of the maximum assimilation rate was necessary to obtain the best model fit. This suggests a genetic adaptation, with a pattern of cogradient variation with increasing resource towards the north, in addition to a countergradient thermal adaptation. Overall, the seasonal energy dynamics supports the pattern of body-size scaling with latitude, i.e. food-limited growth but low maintenance costs in the warm Aegean Sea, and larger size in the North Sea allowing sufficient storage capacity for overwintering. Further, the model suggests a synchronisation of reproductive timing with environmental seasonality as a trade-off between thresholds of temperature and reserves for spawning and overwintering, respectively. Finally, low temperature, short productive and spawning seasons, and insufficient reserves for overwintering appear to be current limitations for an expansion of anchovy to the Norwegian Sea. KEY WORDS: Engraulis encrasicolus · Countergradient variation · Growth · Reproduction · Dynamic Energy Budget theory · Bay of Biscay · Aegean Sea · North Sea Full text in pdf format PreviousNextCite this article as: Huret M, Tsiaras K, Daewel U, Skogen MD, Gatti P, Petitgas P, Somarakis S (2019) Variation in life-history traits of European anchovy along a latitudinal gradient: a bioenergetics modelling approach. Mar Ecol Prog Ser 617-618:95-112. https://doi.org/10.3354/meps12574 Export citation RSS - Facebook - Tweet - linkedIn Cited by Published in MEPS Vol. 617-618. Online publication date: May 16, 2019 Print ISSN: 0171-8630; Online ISSN: 1616-1599 Copyright © 2019 Inter-Research.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call