Abstract
The mesophyll anatomical traits are essential factors for efficient light capture, CO2 diffusion, and hydraulics in leaves. At the same time, leaf hydraulics are governed by the xylem anatomical traits. Thus, simultaneous analyses of the mesophyll and xylem anatomy will clarify the links among light capture, CO2 capture, and water use. However, such simultaneous analyses have been scarcely performed, particularly on non-seed plants. Using seven fern species, we first showed that fern species with a large mesophyll thickness had a high photosynthetic rate related to high light capture, high drought tolerance, and low leaf hydraulic conductance. The chloroplast surface area (Sc) per mesophyll thickness significantly decreased with an increase in mesophyll thickness, which may increase light diffusion and absorption efficiency in each chloroplast. The photosynthetic rate per Sc was almost constant with mesophyll thickness, which suggests that ferns enhance their light capture ability via the regulation of chloroplast density.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.