Abstract
Summary Reproductive success for species in which offspring are confined to a distinct resource depends on the ability of parents to locate reproductive sites as well as the quality of these sites in terms of the food source, risk of predation and competition. To locate hosts for their offspring, parasitic wasps, or parasitoids, use plant odour blends induced by herbivore feeding. These herbivore‐induced plant volatiles (HIPVs) may also be used by competitors and predators. Therefore, offspring of parasitoids that respond to the most conspicuous odours may find themselves more frequently involved in competition or predation risk. We studied cultivars of Brassica oleracea that are known to differ in volatile production that underlies attractiveness to parasitoids and asked whether variation in this parameter is associated with a heterogeneous distribution of intrinsic competition among parasitoid larvae and predation risk by hyperparasitoids that parasitize parasitoid larvae or pupae. We inoculated field‐grown plants with Pieris caterpillars and, thereafter, exposed them to the natural parasitoid community. We measured the frequency of multiple incidences of parasitism in these herbivores. Cocoons of the parasitoids were collected to identify the degree of hyperparasitism associated with different Brassica cultivars. Pieris caterpillars on cultivars that were more attractive to Cotesia parasitoids were more commonly parasitized by several females of the same (superparasitism) or different wasp species (multiparasitism) than caterpillars on less attractive plants. Cocoons of parasitoids on attractive plants also more frequently produced hyperparasitoids. Our results show that there is heterogeneity in intrinsic competition and risk of hyperparasitism for parasitoids on different cabbage cultivars and that this heterogeneity is likely generated by variation in attraction of parasitoids to HIPVs of these cultivars. We conclude that parasitoids may find themselves between a rock and a hard place as cues for host presence may also predict high levels of competition and risk of predation. We speculate that this affects selection on parasitoid responses to plant odours and enhances selection on traits that make wasps better intrinsic or extrinsic competitors as well as selection for adaptive traits – such as crypsis – that protect them against hyperparasitoids.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.