Abstract
Plants from a sun and shade population were grown in two environments differing in the ratio of red to far-red light (R/FR ratio). A low R/FR ratio, simulating vegetation shade, promoted the formation of long, upright-growing leaves and allocation towards shoot growth, whereas a high R/FR ratio had the opposite effects. The increase in plant height under the low R/FR ratio was accompanied by a reduction in the number of leaves. Population differences in growth form resembled the differences between plants grown in different light environments: plants from the shade population had rosettes with long erect leaves, whereas plants from the sun population formed prostrate rosettes with short leaves. Plants from the shade population were more responsive to the R/FR ratio than plants from the sun population: the increases in leaf length, plant height, and leaf area ratio under a low R/FR ratio were larger in the shade population. However, differences in plasticity were small compared to the population difference in growth form itself. We argue that plants do not respond optimally to shading and that developmental constraints might have limited the evolution of an optimal response.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.