Abstract

AbstractVariation in thermal performance within and between populations provides the potential for adaptive responses to increasing temperatures associated with climate change. Organisms experiencing temperatures above their optimum on a thermal performance curve exhibit rapid declines in function and these supraoptimal temperatures can be a critical physiological component of range limits. The gypsy moth, Lymantria dispar (L.) (Lepidoptera: Erebidae), is one of the best‐documented biological invasions and factors driving its spatial spread are of significant ecological and economic interest. The present study examines gypsy moth sourced from different latitudes across its North American range for sensitivity to high temperature in constant temperature growth chamber experiments. Supraoptimal temperatures result in higher mortality in northern populations compared with populations from the southern range extent (West Virginia and coastal plain of Virginia, U.S.A.). Sublethal effects of high temperature on traits associated with fitness, such as smaller pupal mass, are apparent in northern and West Virginia populations. Overall, the results indicate that populations near the southern limits of the range are less sensitive to high temperatures than northern populations from the established range. However, southern populations are lower performing overall, based on pupal mass and development time, relative to northern populations. This suggests that there may be a trade‐off associated with decreased heat sensitivity in gypsy moth. Understanding how species adapt to thermal limits and possible fitness trade‐offs of heat tolerance represents an important step toward predicting climatically driven changes in species ranges, which is a particularly critical consideration in conservation and invasion ecology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.