Abstract

Although the flowering of facultative biennials is size-dependent, flowering size varies markedly within a single population as well as among populations. In this study, 15 half-sib families of the facultative biennial Aster kantoensis were grown from seeds at three nutrient levels (low, medium, and high). A significant nutrient × family interaction effect was found for bolting size, and among-family variation in bolting size increased with decreasing nutrient level. Growth from bolting to flowering tended to be greatest at the high nutrient level. Such responses of bolting size and growth from bolting to flowering resulted in an increase in flowering size at the high nutrient level and a significant variation in its reaction norm among families. For flowering age, there was a significant interaction of nutrient × family, and its among-family variation increased with decreasing nutrient levels, as was the case with bolting size. These results indicate that genetic variation in phenotypic plasticity of bolting size with nutrient availability was one cause of the variation in flowering size and age in the A. kantoensis population on the floodplain with the spatially heterogeneous nutrient availability. Moreover, responses of growth from bolting to flowering to nutrient availability could enhance the variation in flowering size.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.