Abstract

Carbon cycle perturbations in high-latitude ecosystems associated with rapid warming can have implications for the global climate. Belowground biomass is an important component of the carbon cycle in these ecosystems, with, on average, significantly more vegetation biomass belowground than aboveground. Large quantities of dead root biomass are also in these ecosystems owing to slow decomposition rates. Current understanding of how live and dead root biomass carbon pools vary across high-latitude ecosystems and the environmental conditions associated with this variation is limited due to the labor- and time-intensive nature of data collection. To that end, we examined patterns and factors (abiotic and biotic) associated with the variation in live and dead fine root biomass (FRB) and FRB carbon (C), nitrogen (N) and phosphorus concentrations for 23 sites across a latitudinal gradient in Alaska, spanning both boreal forest and tundra biomes. We found no difference in the live or dead FRB variables between these biomes, despite large differences in predominant vegetation types, except for significantly higher live FRB C:N ratios in boreal sites. Soil C:N ratio, moisture, and temperature, along with moss cover, explained a substantial portion of the dead:live FRB ratio variability across sites. We find all these factors have negative relationships with dead FRB, while having positive or no relationship with live FRB. This work demonstrates that FRB does not necessarily correlate with aboveground vegetation characteristics, and it highlights the need for finer-scale measurements of abiotic and biotic factors to understand FRB landscape variability now and into the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call