Abstract
For mirror nuclei with masses A=42-95, the effects of isospin-nonconserving nuclear forces are studied with the nuclear shell model using the Coulomb displacement energy and triplet displacement energy as probes. It is shown that the characteristic behavior of the displacement energies can be well reproduced if the isovector and isotensor nuclear interactions with J=0 and T=1 are introduced into the f(7/2) shell. These forces, with their strengths being found consistent with the nucleon-nucleon scattering data, tend to modify nuclear binding energies near the N=Z line. At present, no evidence is found that these forces are needed for the upper fp shell. Theoretical one- and two-proton separation energies are predicted accordingly, and locations of the proton drip line are thereby suggested.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.