Abstract

Particles of prosthetic material stimulate macrophages to release cytokines, which may cause bone loss and loosening of the prosthesis. This study investigates the possibility that particles of different prosthetic materials may induce different cytokines and thus have different effects on bone remodeling. The in vitro response of human monocytes to particles of cast and forged cobalt chrome alloy, stainless steel, and titanium aluminum vanadium alloy were compared. There was no difference in the biologic response to cobalt-chrome particles derived from cast or forged material. Cobalt-chrome particles were toxic to the cells, but titanium aluminum vanadium particles did not affect cell viability. Stainless steel particles were approximately 10 times more toxic than were cobalt-chrome particles. All particles induced the release of tumor necrosis factor and interleukin 1 beta; stainless steel particles were the most potent stimulators of interleukin 1 beta; titanium aluminum vanadium particles were the strongest stimulators of interleukin 6 and prostaglandin 2. The study showed that particles derived from prosthetic materials of different metal compositions can elicit significantly different biologic responses. Understanding these different responses may help identify materials better suited for prostheses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.