Abstract

The variation in the crystal structure of Ln2Ni1−xCuxO4+δ, which has great potential as a new cathode material for solid oxide fuel cells, based on the type of Ln (La, Pr, Nd, Sm, Eu, and their solid solution), was investigated. For Ln with ionic radius larger than 1.21 Å (1 Å = 0.1 nm), a single-phase K2NiF4 structure called T-phase was prepared for 0.0 ≤ x ≤ 1.0. For Ln with ionic radius between 1.21 and 1.15 Å, the crystal structure changed from single T-phase to single Nd2CuO4 structure called T′-phase, through the mixture of T-phase and T′-phase, along with increasing Cu content. The range of Cu content, in which the mixture phase was obtained because of the miscibility gap, increased with the decreasing size of Ln. The single T-phase was never prepared for Ln with ionic radius below 1.15 Å. Rough tendencies were observed, indicating that the single T-phase was obtained or was not prepared if the tolerance factor was above or below 0.865, respectively. The mixture of T-phase and T′-phase was obtained because of the miscibility gap by decreasing the tolerance factor slightly below about 0.865. The T-phase was never generated by decreasing the tolerance factor any further. The change of the crystal structure by Cu content and kind of Ln can also be explained by using Jahn–Teller effect of Cu2+ ion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.