Abstract

Short rotation coppice (SRC) willow is currently emerging as an important dedicated lignocellulosic energy crop in the UK. However, investigation into the variation between species and genotypes in their suitability for liquid transport biofuel processing has been limited. To address this, four traits relevant to biofuel processing (composition, enzymatic saccharification, response to pretreatment and projected ethanol yields) were studied in 35 genotypes of willow including Europe’s leading SRC willow cultivars. Large, genotype-specific variation was observed for all four traits. Significant positive correlations were identified between the accessibility of glucan to enzymatic saccharification before and after pretreatment as well as glucose release and xylose release via acid hydrolysis during pretreatment. Of particular interest is that the lignin content of the biomass did not correlate with accessibility of glucan to enzymatic saccharification. The genotype-specific variations identified have implications for SRC willow breeding and for potential reductions in both the net energy expenditure and environmental impact of the lignocellulosic biofuel process chain. The large range of projected ethanol yields demonstrate the importance of feedstock selection based on an ideotype encompassing the performance of both field biomass growth and ease of conversion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call