Abstract

Drosophila C virus (DCV) is a natural pathogen of Drosophila and a useful model for studying antiviral defences. The Drosophila host is also commonly infected with the widespread endosymbiotic bacteria Wolbachia pipientis. When DCV coinfects Wolbachia-infected D. melanogaster, virus particles accumulate more slowly and virus induced mortality is substantially delayed. Considering that Wolbachia is estimated to infect up to two-thirds of all insect species, the observed protective effects of Wolbachia may extend to a range of both beneficial and pest insects, including insects that vector important viral diseases of humans, animals and plants. Currently, Wolbachia-mediated antiviral protection has only been described from a limited number of very closely related strains that infect D. melanogaster. We used D. simulans and its naturally occurring Wolbachia infections to test the generality of the Wolbachia-mediated antiviral protection. We generated paired D. simulans lines either uninfected or infected with five different Wolbachia strains. Each paired fly line was challenged with DCV and Flock House virus. Significant antiviral protection was seen for some but not all of the Wolbachia strain-fly line combinations tested. In some cases, protection from virus-induced mortality was associated with a delay in virus accumulation, but some Wolbachia-infected flies were tolerant to high titres of DCV. The Wolbachia strains that did protect occurred at comparatively high density within the flies and were most closely related to the D. melanogaster Wolbachia strain wMel. These results indicate that Wolbachia-mediated antiviral protection is not ubiquitous, a finding that is important for understanding the distribution of Wolbachia and virus in natural insect populations.

Highlights

  • As obligate intracellular parasites, viruses have intricate associations with their hosts

  • Wolbachia is widespread in insects, so here we tested the generality of antiviral protection across diverse strains of the bacteria

  • Wolbachia strain wMel can protect D. simulans from Drosophila C virus (DCV) Wolbachia strains closely related to wMel have previously been shown to protect their natural host D. melanogaster from accumulation of DCV particles and DCV-induced mortality [7,8]

Read more

Summary

Introduction

Viruses have intricate associations with their hosts. Many viruses have deleterious effects on their host including virus induced pathology, morbidity and mortality. For this reason a suite of antiviral defence responses have evolved. Some of these responses are conserved across different kingdoms, while others are unique to closely related groups of organisms. Viruses that infect insects encounter some host defences that are distinctive to invertebrates, such as the peritrophic matrix. It is important to understand insect antiviral responses for other reasons. Viruses cause diseases in both pest insect species and beneficial insects. There are diverse reasons for wanting to control virus infection in insects and understanding antiviral responses in insects may facilitate strategies to achieve this

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.