Abstract

Although phenotypic plasticity of morphological and physiological traits in response to drought could be adaptive, there have been relatively few tests of plasticity variation or of adaptive plasticity in drought-coping traits across populations with different moisture availabilities. We measured floral size, vegetative size, and physiological traits in four field populations of Leptosiphon androsaceus (Polemoniaceae) that were distributed across a rainfall gradient in California, USA. Measurements were made over 5 years that varied in precipitation. We also conducted a growth chamber experiment in which half-sibs from three populations were divided equally among a well-watered and a drought treatment. We tested for selection on traits in each of the watering treatments, and evaluated whether traits exhibited plasticity. In the field, plant traits exhibited substantial variation across populations and years. Flower size, leaf size, and water-use efficiency (WUE) were generally higher for populations that received greater average rainfall. However, in dry years, we observed a decrease in flower and leaf size, but an increase in WUE across the populations. In the growth chamber experiment, leaf and physiological traits exhibited plasticity, with smaller leaves and higher WUE found in the drought, as compared to the well-watered treatment. Only specific leaf area exhibited differentiation in plasticity among populations. Although there was no observed plasticity in floral size, selection favored smaller flowers in the drought treatment and larger flowers in the well-watered treatment. Our results suggest that moisture availability has led to trait variation in L. androsaceus via a combination of selection and phenotypic plasticity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call