Abstract
Tinnitus often occurs after exposure to loud noise. This raises the question of whether repeated exposure to noise increases the risk of developing tinnitus. We thus studied tinnitus development after repeated acoustic overstimulation using startle and auditory brainstem-response techniques applied to Mongolian gerbils. Noise with bandwidths ranging from 0.25 up to 0.5oct were used for repeated acoustic overstimulation. Auditory brainstem response measurements revealed similar threshold shifts in both groups of up to about 30dB directly after the acoustic overstimulation. We identified an upper limit in threshold values, which was independent of the baseline values before the noise exposure. Several weeks after the acoustic overstimulation, animals with the noise bandwidth of 0.25oct showed a permanent threshold shift, while animals of the group with the 0.5-oct noise band featured only a temporary threshold shift. We thus conclude that the threshold shift directly after noise exposure cannot be used as an indicator for the upcoming threshold level several weeks later. By using behavioral measurements, we investigated the frequency-dependent development of tinnitus-related changes in both groups and one group with 1-oct noise bandwidth. The number of animals that show tinnitus-related changes was highest in animals that received noise with the bandwidth 0.5oct. This number was, in contrast to the number of animals in the 0.25-oct bandwidth, not significantly increased after repeated overstimulation. The frequency distribution of tinnitus-related changes ranged from 4 to 20kHz. In the group with the narrow-band noise (0.25oct) changes center at one frequency range from 10 to 12kHz. In the group with the broader noise band (0.5oct), however, two peaks at 8–10kHz and at 16–18kHz were found, which suggests that different mechanisms underlie the tinnitus development.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.