Abstract

Background:The existent literature has well explored knee ligament kinetics and strain at and after initial contact (IC) during landing tasks. However, little is known about knee ligament biomechanics in flight before IC.Purpose:To quantify and compare change in anterior cruciate ligament (ACL) and medial collateral ligament (MCL) strain before IC relative to after IC.Study Design:Descriptive laboratory study.Methods:A total of 40 cadaveric specimens were analyzed after being subjected to simulated landings in a mechanical impact simulator. External joint loads of varying magnitudes were applied to mimic relative injury risk load levels from an in vivo cohort and were coupled with an impulse force to represent initial ground contact. Implanted strain gauges continually recorded ligament strain. Kruskal-Wallis tests evaluated the significance of risk level and pre- and post-IC factors, while Wilcoxon each-pair tests evaluated differences within both factors.Results:Strain responses during simulated landing tasks for the ACL (P ≥ .545) and MCL (P ≥ .489) were consistent after IC regardless of the level of relative injury risk simulated in each trial. Before IC, the level of injury risk kinetics applied to a specimen differentiated strain response in the ACL (P < .001) and MCL (P < .001), as higher risk profiles produced greater changes in ligament strain. Mean baseline strain was 4.0% in the ACL and 1.0% in the MCL. Mean change in strain from the ACL ranged from 0.1% to 3.9% pre-IC and from 2.9% to 5.7% post-IC, while the MCL ranged from 0.0% to 3.0% pre-IC and from 0.9% to 1.3% post-IC.Conclusion:Within each ligament, post-IC strain response lacked statistical differences among simulated risk profiles, while pre-IC response was dependent on the risk profile simulated. Individually, neither pre- nor poststrain changes were enough to induce ACL failure, but when combined over the course of a full landing task, they could lead to rupture.Clinical Relevance:Prevention and rehabilitation techniques should aim to limit the presence of increased risk biomechanics in flight before landing, as impulse delivery at IC is inevitable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.