Abstract

Proper defect states are demonstrated to be beneficial to overcome thermal quenching of the corresponding phosphors. In this work, a cyan-emitting KGaGeO4/Bi3+ phosphor with abundant defect states is reported, the emission intensity of which exhibits an abnormal thermal quenching performance under excitation with different photon energies. A 100% emission intensity is achieved at 393 K under 325 nm excitation compared with that at room temperature, while significantly enhanced intensities of 207% at 393 K and even 351% at 513 K under 365 nm excitation are recorded. The excellent thermal stability performance is confirmed to be not only related to the direct energy transfer from the defect states but also depended on the efficiency of capturing carriers for the trap centers, which is clarified in this work. In addition, the mechanism of the double tunneling process of carriers from trap centers to luminescence centers and luminescence centers to trap centers is studied. These results are believed to provide new insights into the thermal stability of the corresponding fluorescent materials and could inspire studies to further explore novel fluorescent materials with high thermal stability based on defect state engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.