Abstract

A multi-frequency Global Navigation Satellite System (GNSS) provides greater opportunities for positioning and navigation applications, particularly the BeiDou Global Navigation Satellite System (BDS-3) satellites. However, multi-frequency signals import more pseudorange channels, which introduce more multi-channel Differential Code Biases (DCBs). The satellite and receiver DCBs from the new BDS-3 signals are not clear. In this study, 9 DCB types of the new BDS-3 signals from 30-days Multi-GNSS Experiment (MGEX) observations are estimated and investigated. Compared with the DCB values provided by the Chinese Academy of Science (CAS) products, the mean bias and root mean squares (RMS) error of new BDS-3 satellite DCBs are within ±0.20 and 0.30 ns, respectively. The satellite DCBs are mostly within ±0.40 ns with respect to the product of the Deutsches Zentrum für Luft- und Raumfahrt (DLR). The four sets of constructed closure errors and their mean values are within ±0.30 ns and ±0.15 ns, respectively. The mean standard deviation (STD) of the estimated satellite DCBs is less than 0.10 ns. In particular, our estimated satellite DCBs are more stable than DCB products provided by CAS and DLR. Unlike satellite DCBs, the receiver DCBs have poor compliance and show an obvious relationship with the geographic latitude when compared to the CAS products. The STDs of our estimated receiver DCBs are less than 1.00 ns. According to different types of receiver DCBs, the distribution of STDs indicates that the coefficient of the ionospheric correction has an influence on the stability of the receiver DCBs under the ionosphere with the same accuracy level. In addition, the type of receiver shows no regular effects on the stability of receiver DCBs.

Highlights

  • IntroductionThe satellite and receiver Differential Code Biases (DCBs) from the new BDS-3 signals are not clear

  • This paper aims to estimate and analyze the satellite and receiver Differential Code Biases (DCBs) of the new BDS3 signals (B1C/B2a/B2b/B2(a+b))

  • The results show our estimated DCBs have better consistency with the direct DCB value provided by Chinese Academy of Science (CAS) products

Read more

Summary

Introduction

The satellite and receiver DCBs from the new BDS-3 signals are not clear. 9 DCB types of the new BDS-3 signals from. Compared with the DCB values provided by the Chinese Academy of Science (CAS) products, the mean bias and root mean squares (RMS) error of new BDS-3 satellite DCBs are within ±0.20 and 0.30 ns, respectively. The satellite DCBs are mostly within ±0.40 ns with respect to the product of the Deutsches Zentrum für Luft- und Raumfahrt (DLR). The mean standard deviation (STD) of the estimated satellite DCBs is less than 0.10 ns. Our estimated satellite DCBs are more stable than DCB products provided by CAS and DLR. Unlike satellite DCBs, the receiver DCBs have poor compliance and show an obvious relationship with the geographic latitude when compared to the CAS products

Objectives
Methods
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call