Abstract

Using a method developed by Qiu (Qiu, J., 1998. A method to determine atmospheric aerosol optical depth using total direct solar radiation. J. Atmos. Sci. 55, 734–758), 0.75 μm aerosol optical depths at five meteorological observatories in north China during 1980–1994 are retrieved from global direct solar radiation, and variation characteristics of the depths and visibility are analyzed. These observatories are located in the cities of Wulumuqi, Geermu, Harbin, Beijing and Zhengzhou. It is found that during 1980–1994 the aerosol optical depths show an increasing trend at all five sites. During winter the trend is stronger. In winter at Beijing and Wulumuqi, the depth increased by a factor of about two in 15 years. Pollution caused due to the burning of fossil fuel is the main cause of the change. In spring at Geermu the depth is larger and its increase is the quickest among the four seasons, mainly due to desert dust events. The Pinatubo volcanic eruption in 1991 had a significant influence on the aerosol optical depth. The yearly averaged depths over five sites in 1992 after the eruption increased by 0.068 to 0.212, compared to those in 1990, while from 1992 to 1994 they generally show a decreasing trend. In some cities such as Zhengzhou and Geermu, both visibility and optical depth show an increasing trend during 1980–1994, a possible reason for this is that the aerosol particle vertical distribution shifts up in the troposphere. At Geermu, Harbin, Beijing and Zhengzhou, optical depths in summer are larger, which may be because of the growth of aerosol particles growing in the moist summer. Apart from Geermu, at the other four sites visibility in winter is smaller, especially at Wulumuqi and Harbin. At Harbin, visibility in summer is about twice larger than that in winter, but the difference between depths is small, implying the turbid lower troposphere in winter and the larger extinction coefficient in the upper troposphere during summer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call