Abstract

Orthogonal frequency division multiplexing (OFDM) continues to find vast deployment in current and next generation wireless communication systems. However, high peak-to-average power ratio (PAPR) is one of the major drawbacks in the OFDM system. In this paper, we develop a variation approach based nonlinear companding (VANC) scheme to reduce the PAPR in OFDM systems. It aims to find the probability density function (PDF) for OFDM signal amplitudes with low PAPR and low distortion compared with their original Rayleigh distribution. The target PDF is found by solving a variation optimization problem model, which is built to find the lowest PDF distortion with both average signal power and probability conservation constraint. To the best of our knowledge, it is the first time that the variation method is used to find companding function to address the high PAPR problem. We then propose an algorithm with companding operation based on quantized levels. Simulation results validate the performance superiorities of the proposed scheme to that of other typical companding schemes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.