Abstract

The sizes of the lumbar and thoracic dorsal root ganglion cell populations in normally developing newly metamorphosed Xenopus laevis were measured in order to determine whether these neuron populations have the same characteristics as the hindlimb motoneuron population (i.e., large individual as well as sibling group differences, striking bilateral symmetry, and a rough correspondence between neuron number and body size that suggests some peripheral control of cell number during normal development (Sperry, J. Comp. Neurol. 264:250-267). Among animals from three sibling groups, the total numbers of thoracic and lumbar ganglion cells are highly variable and symmetrical, although symmetry is not uniformly present at the level of individual ganglion pairs. Significant sibling group differences in neuron number are also present. Metamorphic body size and cell number in the thoracic but not in the lumbar ganglia are significantly correlated. The motoneurons innervating the hindlimbs were also counted and measured in the same animals. While variable as well as symmetrical, motoneuron number and metamorphic body size are correlated in only two of the three sibling groups. Interestingly, the numbers of motoneurons and lumbar ganglion cells, two populations of neurons whose sizes one might predict would be significantly correlated in normally developing animals, are not correlated. The relationship between these observations and currently held views concerning how neuron numbers might be controlled during normal development is discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call