Abstract

Many terrestrial predators rely on olfaction to detect prey; therefore, prey should select habitat to reduce detectability of their odor cues. One way prey can potentially conceal their odor is by selecting locations with high turbulence and/or updrafts, conditions that disperse odor plumes and make odor sources difficult to locate. However, it is unclear how these conditions vary among vegetation cover types and which vegetative features drive them. We assessed variation and drivers of variables hypothesized to influence olfactory concealment (turbulence intensity and airflow slope) and experimentally evaluated whether these variables indeed influence predator detection of simulated prey. Specifically, we compared vegetation patch-scale values of turbulence intensity and airflow slope among grassland, shrubland, and forest and assessed relationships among these airflow variables and local-scale vegetative features within each vegetation type. Additionally, we experimentally investigated the importance of turbulence intensity, airflow slope, and visual concealment for predicting predator detection of scented quail eggs. In all vegetation types, we documented high variability in airflow conditions. At the patch scale, turbulence intensity was greater in shrubland and grassland than in forest, and updrafts were most common in shrubland whereas downdrafts were most common in grassland. Grassland was the only vegetation type with strong relationships among turbulence intensity and local vegetation features; both visual concealment and vegetation height were positively related to turbulence intensity. Additionally, persistence of scented quail eggs in grassland was best predicted by turbulence intensity; egg persistence increased with turbulence intensity. Our characterization of differences in olfactory variables among vegetation types provides an important step towards building a clearer understanding of olfactory landscapes. Further, our observation of both patch- and local-scale variation in olfactory variables suggests that prey can potentially select for olfactory concealment at multiple scales. We hypothesize that olfactory concealment provided by high levels of turbulence intensity is an important component of cover in grassland, and that in grassland/shrubland landscapes, prey selection of shrubland patches reduces odor detectability. Our finding of a positive relationship between turbulence intensity and visual concealment also suggests that olfactory concealment may be a previously underappreciated confounding factor in studies of habitat selection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.