Abstract
The physiochemical, structural, and molecular characteristics of starch influence its functional properties, thereby dictating its utilization. The study aimed to profile the properties and quantity of resistant starch (RS) from 15 different banana varieties, extracted using a combination of alkaline and enzyme treatments. Granular structure and molecular organization were analyzed using light microscopy, scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR). The physiochemical and functional properties were also investigated. RS content ranged from 49% to 80% without significant relationship to amylose (AM) (r = -0.1062). SEM revealed significant microarchitectural differences on the granules potentially affecting granule digestibility. FTIR and chemometrics identified differences in the crystalline peaks, yielding varying degrees of the molecular order of the RS polymers that aid in differentiating the RS sources. Despite similar solubility and swelling profiles, the pasting profiles varied across varieties, indicating high paste stability in hydrothermal processing. Clarity ranged from 43% to 93%, attributed to amylose leaching. This study highlights that RS from bananas varies in quantity, structure, and functionality, necessitating individualized approaches for processing and utilization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.