Abstract

To examine the association between lipoprotein lipase (LPL) polymorphisms and susceptibility to diabetic kidney disease (DKD) and early renal function decline in Chinese patients with type 2 diabetes (T2D). The association of eight LPL single nucleotide polymorphisms (SNPs) with DKD was analysed in 2793 patients with T2D from the third China National Stroke Registry. DKD was defined as either an urine albumin-to-creatinine ratio (UACR) of 30 mg/g or higher at baseline and 3 months, or an estimated glomerular filtration rate (eGFR) of less than 60 mL/min/1.73 m2 at baseline and 3 months. Rapid decline in kidney function (RDKF) was defined as a reduction in the eGFR of 3 mL/min/1.73 m2 or greater per year. Logistic regression models were used to evaluate the association of LPL SNP and DKD with an additive model. The SNPs rs285 C>T (OR = 1.40, P = .0154), rs328 C>G (OR = 2.24, P = .0104) and rs3208305 A>T (OR = 1.85, P = .0015) were identified to be significantly associated with DKD defined by eGFR. Among 1241 participants with follow-up data, 441 (35.5%) showed RDKF over a mean follow-up period of 1 year, and the rs285 C allele was associated with higher odds of RDKF (OR = 1.31, 95% CI 1.04-1.66; P = .025) after adjustment for multiple variables. These results suggest that LPL-related SNPs are new candidate factors for conferring susceptibility to DKD and may promote rapid loss of renal function in Chinese patients with T2D.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.