Abstract

BackgroundTransient receptor potential melastatin member 4 (TRPM4) is a nonselective cation channel. TRPM4 mutations have been linked to cardiac conduction disease and Brugada syndrome. The mechanisms underlying TRPM4‐dependent conduction slowing are not fully understood. The aim of this study was to characterize TRPM4 genetic variants found in patients with congenital or childhood atrioventricular block.Methods and ResultsNinety‐one patients with congenital or childhood atrioventricular block were screened for candidate genes. Five rare TRPM4 genetic variants were identified and investigated. The variants were expressed heterologously in HEK293 cells. Two of the variants, A432T and A432T/G582S, showed decreased expression of the protein at the cell membrane; inversely, the G582S variant showed increased expression. Further functional characterization of these variants using whole‐cell patch‐clamp configuration showed a loss of function and a gain of function, respectively. We hypothesized that the observed decrease in expression was caused by a folding and trafficking defect. This was supported by the observation that incubation of these variants at lower temperature partially rescued their expression and function. Previous studies have suggested that altered SUMOylation of TRPM4 may cause a gain of function; however, we did not find any evidence that supports SUMOylation as being directly involved for the gain‐of‐function variant.ConclusionsThis study underpins the role of TRPM4 in the cardiac conduction system. The loss‐of‐function variants A432T/G582S found in 2 unrelated patients with atrioventricular block are most likely caused by misfolding‐dependent altered trafficking. The ability to rescue this variant with lower temperature may provide a novel use of pharmacological chaperones in treatment strategies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.