Abstract

We propose variants of the quantized visibility graph (QVG) for efficient path planning. Conventional visibility graphs have been used for path planning when the obstacles are polygonal. The QVG extends its usability to arbitrarily-shaped objects by representing the obstacles as polygons. We propose QVG variants which represent all combinations of three factors, each with two alternatives: (i) quantization level (fixed-level or multiple-level), (ii) object representation method (inner and boundary cells together or boundary cells only), and (iii) methods used to check whether pairs of points are mutually visible (rotational plane sweep algorithm or sign inequality discrimination (SID) algorithm). In the verification of the efficiency of the proposed QVGs, (i) all QVGs produced the same best path, which was shorter than the convectional algorithms, (ii) computational cost to find the shortest path is lower when using QVGs than when using the convectional algorithms and (iii) the QVG that uses multi-level quantization, partial obstacle representation and SID visibility checking provides the shortest best path and has lower computational cost than all other methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.