Abstract

Many variations of the Diffie-Hellman problem exist that can be shown to be equivalent to one another. We consider following variations of Diffie-Hellman problem: square computational and Square decisional Diffie-Hellman problem, inverse computational and inverse computational decisional Diffie-Hellman problem and divisible computational and divisible decisional Diffie-Hellman problem. It can be shown that all variations of computational Diffie-Hellman problem are equivalent to the classic computational Diffie-Hellman problem if the order of a underlying cyclic group is a large prime. We also describe other variations of the Diffie-Hellman problems like the Group Diffie-Hellman problem, bilinear Diffie-Hellman problem and the Elliptic Curve Diffie-Hellman problem in this chapter.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.