Abstract

Clustering is an exploratory data analysis technique that organize the data objects into clusters with optimal distance efficacy. In this work, a bat algorithm is considered to obtain optimal set of clusters. The bat algorithm is based on the echolocation feature of micro bats. Moreover, some improvements are proposed to overcome the shortcoming associated with bat algorithm like local optima, slow convergence, initial seed points and trade-off between local and global search mechanisms etc. An enhanced cooperative co-evolution method is proposed for addressing the initial seed points selection issue. The local optima issue is handled through neighbourhood search-based mechanism. The trade-off issue among local and global searches of bat algorithm is addressed through a modified elitist strategy. On the basis of aforementioned improvements, three variants (BA-C, BA-CN and BA-CNE) of bat algorithm is developed and efficacy of these variants is tested over twelve benchmark clustering datasets suing intra-cluster distance, accuracy and rand index parameters. Simulation results showed that BA-CNE variant achieves more effective clustering results as compared to BA-C, BA-CN and BA. The simulation results of BA-CNE are also compared with several existing clustering algorithms and two statistical tests are also applied to investigate the statistical difference among BA-CNE and other clustering algorithms. The simulation and statistical results confirmed that BA-CNE is an effective and robust algorithm for handling partitional clustering problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.