Abstract

Perforated semiconductor neutron detectors are compact, high-efficiency, diode detectors that operate at low power. Microstructured neutron detector fabrication methods have been improved over previous manufacturing methods. The neutron detectors are easily fabricated from high purity n-type Si, in which patterned trenches are etched into the Si substrate, wherein shallow p-type junctions are diffused. The trenches are then backfilled with <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">6</sup> LiF powder, making the devices sensitive to reaction products from the <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">6</sup> Li(n,t) <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sup> He reaction. Pulse height spectra show improved signal-to-noise ratio, higher neutron counting efficiency, and excellent gamma-ray discrimination over previous microstructured neutron detector designs. Thermal neutron detection measurements from a 0.0253 eV diffracted neutron beam, yielded 20.4% intrinsic detection efficiency for devices with 245 micron deep trenches and 21% intrinsic detection efficiency for two back-to-back devices each having 113 micron deep trenches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.