Abstract
The primary technical constraint plant scientists face in generating insect resistant transgenic crops with insecticidal Bacillus thuringiensis (Bt) crystal protein (Cry) genes remains failing to generate sufficiently large numbers of effective resistant transgenic plant lines. One possible means to overcome this challenge is through deployment of a Cry toxin gene that contains high levels of insecticidal specific activity for target insect pests. In the present study, we tested this hypothesis using a natural variant of the Cry1Ab toxin under laboratory conditions that possessed increased insecticidal potency against the yellow stem borer (YSB, Scirpophaga incertulus), one of the most damaging rice insect pests. Following adoption of a stringent selection strategy for YSB resistant transgenic rice lines under field conditions, results showed recovery of a significantly higher number of YSB resistant independent transgenic plant lines with the variant cry1Ab gene relative to transgenic plant lines harbouring cry1Ab berliner gene. Structural homology modelling of the variant toxin peptide with the Cry1Aa toxin molecule, circular dichroism spectral analysis, and hydropathy plot analysis indicated that serine substitution by phenylalanine at amino acid position 223 of the Cry1Ab toxin molecule resulted in a changed role for α-helix 7 in domain I of Cry1Ab for enhanced toxicity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.