Abstract
Aims: This study determined SARS-CoV-2 variations by phylogenetic and virtual phenotyping analyses. Materials & methods: Strains isolated from 143 COVID-19 cases in Turkey in April 2021 were assessed. Illumina NexteraXT library preparation kits were processed for next-generation ]sequencing. Phylogenetic (neighbor-joining method) and virtual phenotyping analyses (Coronavirus Antiviral and Resistance Database [CoV-RDB] by Stanford University) were used for variant analysis. Results: B.1.1.7–1/2 (n = 103, 72%), B.1.351 (n = 5, 3%) and B.1.525 (n = 1, 1%) were identified among 109 SARS-CoV-2 variations by phylogenetic analysis and B.1.1.7 (n = 95, 66%), B.1.351 (n = 5, 4%), B.1.617 (n = 4, 3%), B.1.525 (n = 2, 1.4%), B.1.526-1 (n = 1, 0.6%) and missense mutations (n = 15, 10%) were reported by CoV-RDB. The two methods were 85% compatible and B.1.1.7 (alpha) was the most frequent SARS-CoV-2 variation in Turkey in April 2021. Conclusion: The Stanford CoV-RDB analysis method appears useful for SARS-CoV-2 lineage surveillance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.