Abstract

Deep Q-learning often suffers from poor gradient estimations with an excessive variance, resulting in unstable training and poor sampling efficiency. Stochastic variance-reduced gradient methods such as SVRG have been applied to reduce the estimation variance. However, due to the online instance generation nature of reinforcement learning, directly applying SVRG to deep Q-learning is facing the problem of the inaccurate estimation of the anchor points, which dramatically limits the potentials of SVRG. To address this issue and inspired by the recursive gradient variance reduction algorithm SARAH, this paper proposes to introduce the recursive framework for updating the stochastic gradient estimates in deep Q-learning, achieving a novel algorithm called SRG-DQN. Unlike the SVRG-based algorithms, SRG-DQN designs a recursive update of the stochastic gradient estimate. The parameter update is along an accumulated direction using the past stochastic gradient information, and therefore can get rid of the estimation of the full gradients as the anchors. Additionally, SRG-DQN involves the Adam process for further accelerating the training process. Theoretical analysis and the experimental results on well-known reinforcement learning tasks demonstrate the efficiency and effectiveness of the proposed SRG-DQN algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.