Abstract

The variance of sub-20 nm devices is a critical issue for large-scale integrated circuits. In this work, uniform sub-20 nm Si nanopillar (NP) arrays with a reduced diameter variance (to ±0.5 nm) and a cylindrical shape, which can be used for vertical gate-all-around metal-oxide-semiconductor field-effect transistors, were fabricated. For the fabrication process, an array of tapered Si NPs with a diameter of approximately 62.7 nm and a diameter variance of ±2.0 nm was initially fabricated by an argon fluoride lithography followed by dry etching. Then, the NPs were oxidized in a self-limiting region. After the oxide removal, a similar oxidation process was used again for the NPs. It is determined that by controlling oxidation in the self-limiting region, the diameter variance can be reduced in the height direction of Si NPs (as well as shape control) and between NPs, simultaneously with a controllable diameter decrease. This approach decreases the variance in size caused by conventional nanoprocessing and helps overcome the position-dependent variance for 300 mm φ wafers, which is caused by current semiconductor processing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.