Abstract
Shannon entropy is the most common metric for assessing the degree of randomness of time series in many fields, ranging from physics and finance to medicine and biology. Real-world systems are typically non-stationary, leading to entropy values fluctuating over time. This paper proposes a hypothesis testing procedure to test the null hypothesis of constant Shannon entropy in time series data. The alternative hypothesis is a significant variation in entropy between successive periods. To this end, we derive an unbiased sample entropy variance, accurate up to the order O(n-4)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$O(n^{-4})$$\\end{document} with n the sample size. To characterize the variance of the sample entropy, we first provide explicit formulas for the central moments of both binomial and multinomial distributions describing the distribution of the sample entropy. Second, we identify the optimal rolling window length to estimate time-varying Shannon entropy. We optimize this choice using a novel self-consistent criterion based on counting significant entropy variations over time. We corroborate our findings using the novel methodology to assess time-varying regimes of entropy for stock price dynamics by presenting a comparative analysis between meme and IT stocks in 2020 and 2021. We show that low entropy values correspond to periods when profitable trading strategies can be devised starting from the symbolic dynamics used for entropy computation, namely periods of market inefficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.