Abstract

We consider the problem of estimating the variance of a population using judgment post-stratification. By conditioning on the observed vector of ordered in-stratum sample sizes, we develop a conditionally unbiased nonparametric estimator that outperforms the sample variance except when the rankings are very poor. This estimator also outperforms the standard unbiased nonparametric variance estimator from unbalanced ranked-set sampling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.