Abstract

Statistical inference in censored quantile regression is challenging, partly due to the unsmoothness of the quantile score function. A new procedure is developed to estimate the variance of the Bang and Tsiatis inverse-censoring-probability weighted estimator for censored quantile regression by employing the idea of induced smoothing. The proposed variance estimator is shown to be asymptotically consistent. In addition, a numerical study suggests that the proposed procedure performs well in finite samples, and it is computationally more efficient than the commonly used bootstrap method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.