Abstract

Many complex human diseases such as alcoholism and cancer are rated on ordinal scales. Well-developed statistical methods for the genetic mapping of quantitative traits may not be appropriate for ordinal traits. We propose a class of variance-component models for the joint linkage and association analysis of ordinal traits. The proposed models accommodate arbitrary pedigrees and allow covariates and gene-environment interactions. We develop efficient likelihood-based inference procedures under the proposed models. The maximum likelihood estimators are approximately unbiased, normally distributed, and statistically efficient. Extensive simulation studies demonstrate that the proposed methods perform well in practical situations. An application to data from the Collaborative Study on the Genetics of Alcoholism is provided.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.