Abstract

The common spatial patterns (CSP) algorithm is the most popular technique for extracting electroencephalogram (EEG) features in motor imagery based brain-computer interface (BCI) systems. CSP algorithm embeds the dimensionality of multichannel EEG data to extract features of motor imagery tasks. Most previous studies focused on the optimization of the time domain and the spectrum domain of EEG signal to improve the effectiveness of CSP, whereas ignoring the constraint on the projected feature space. This study proposed a variance characteristic preserving CSP (VPCSP) that is modified by a regularization item based on graph theory. Specifically, we calculated the loss of abnormalities of the projected data while preserving the variance characteristic locally. Then the loss could be rewritten as a matrix with the introduction of the Laplace matrix, which turned it into a generalized eigenvalue problem equivalent to CSP. This study evaluated the proposed method on two public EEG datasets from the BCI competition. The modified method could extract robust and distinguishable features that provided higher classification performance. Experimental results showed that the proposed regularization improved the effectiveness of CSP significantly and achieved superior performance compared with reported modified CSP algorithms significantly. The classification accuracy of the proposed method achieved 87.88 %, 90.07 %, and 76.06 % on public dataset IV part I, III part IVa and the self-collected dataset, respectively. Comparative experiments are conducted on two public datasets and one self-collected dataset. Results showed that the proposed method outperformed the reported algorithm. The proposed method can extract robust features to increase the performance of BCI systems. And the proposal still has expandability. These results show that our proposal is a promising candidate for the performance improvement of MI-BCI.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.