Abstract

Degradation of a catalyst layer in polymer electrolyte membrane fuel cells is considered, which is caused by electrochemical reactions of the platinum ion dissolution and oxide coverage. An accelerated stress test is applied, where the electric potential cycling is given by a non-symmetric square profile. Computer simulations of the underlying one-dimensional Holby–Morgan model predict durability of the fuel cell operating. A sensitivity analysis based on the variance quantifies how loss of the platinum mass subjected to the degradation is impacted by the variation of fitting parameters in the model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.