Abstract
Irregular quasi-cyclic (QC) low-density parity-check (LDPC) codes with the block dual-diagonal (BDD) parity structure are widely adopted in many communication standards because the BDD structure supports an efficient encoding and many degree-2 variable nodes inside are adequate for the construction of mid- to high-rate codes. However, we observe that low-rate irregular QC LDPC codes with the BDD parity structure inherently contain too many degree-2 variable nodes and suffer from error floors in high signal-to-noise ratio (SNR) region. In this paper, a generalized BDD structure including double-weight circulants as well as circulant permutation matrices is proposed for low-rate irregular QC LDPC codes with low error floors which is achieved with a little bit giving up error performance in the waterfall region. When constructing the parity part of a code with the generalized BDD structure, the portion of double-weight circulants is variable so that the resulting LDPC code can achieve a desired degree distribution including degrees 2 and 3 while supporting the efficient encoding. We show that low-rate QC LDPC codes constructed with the proposed BDD structure have better theoretical properties and lower error floor than those with the conventional BDD structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: IEEE Transactions on Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.