Abstract

This paper analyzes different control strategies for the thermal storage management in Solar Heating and Cooling systems (SHC) for different Italian climates. This novel thermal storage system consists in a variable volume storage tank system, which includes three separate tanks and a number of mixers and diverters. Such devices are managed through two different control strategies, based on combinations of series/parallel charging and discharging approaches. Thus, it is possible to vary the thermal storage capacity as a function of the combinations of solar radiation availability and user thermal/cooling energy demands. The system allows one to either increase or reduce the number of active tanks when the occurring mismatch between the solar energy supply and the user demand is either high or low, respectively. In addition, the surplus of solar energy is used through a heat exchanger included in the solar loop for the production of Domestic Hot Water (DHW). This novel variable-volume storage system, in all the proposed configurations, is also compared with a constant-volume storage system from the energetic and economic points of view. In addition, in order to determine the set of the synthesis/design variables which maximize the system profitability, a parametric analysis is implemented. A case study developed for an office building located in different Italian climatic areas is also presented. Simulation results show that the analyzed SHC systems system configurations may be profitable for all those cases and weather locations in which a sufficiently high solar fraction is achieved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.