Abstract
Swept tones allow the efficient measurement of otoacoustic emissions (OAEs) with fine frequency resolution. Although previous studies have explored the influence of different sweep parameters on the measured OAE, none have directly considered their effects on the measurement noise floor. The present study demonstrates that parameters such as sweep type (e.g., linear or logarithmic), sweep rate, and analysis bandwidth affect the measurement noise and can be manipulated to control the noise floor in individual subjects. Although responses to discrete-tone stimuli can be averaged until the uncertainty of the measurement meets a specified criterion at each frequency, linear or logarithmic sweeps offer no such flexibility. However, measurements of the power spectral density of the ambient noise can be used to construct variable-rate sweeps that yield a prescribed (e.g., constant) noise floor across frequency; in effect, they implement a form of frequency-dependent averaging. The use of noise-compensating frequency sweeps is illustrated by the measurement of distortion-product OAEs at low frequencies, where the ear-canal noise is known to vary significantly.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.