Abstract

BackgroundMycobacterium intracellulare, a species of the Mycobacterium avium complex, may be the cause of severe lung, lymphatic node, skin and bone/joint infections, as well as bacteriemia. The goal of this work was to identify Mycobacterial Interspersed Repetitive Unit-Variable Number Tandem Repeat (MIRU-VNTR) markers and to study their variability in a collection of isolates of M. intracellulare collected in humans. We studied 61 isolates collected in humans between 2001 and 2008, as well as the reference strain, M. intracellulare ATCC 13950.ResultsWe identified 45 MIRU-VNTR candidates, of which 17 corresponded to the MIRU-VNTR identified in the genome of M. intracellulare ATCC 13950. Among the 45 potential MIRU-VNTR, seven were selected for use in a MIRU-VNTR assay applied to our collection of isolates. Forty-four patterns were found by MIRU-VNTR typing and the discriminatory power of the assay was high with a Hunter-Gaston diversity index of 0.98. We do not have evidence of a particular distribution of MIRU-VNTR polymorphism according to clinical situation.ConclusionsOur results suggest that MIRU-VNTR typing could be used for molecular epidemiological studies applied to M. intracellulare.

Highlights

  • Mycobacterium intracellulare, a species of the Mycobacterium avium complex, may be the cause of severe lung, lymphatic node, skin and bone/joint infections, as well as bacteriemia

  • Strain collection Different MIRU-VNTR were studied in a group including 61 M. intracellulare isolates collected under colonization (10 isolates) or infection stages (51 isolates) in humans, and the reference strain M. intracellulare ATCC 13950, named strain 1 in our study

  • Because of the phylogenetic similarity between these species and M. intracellulare, it was predicted that several of these MIRU-VNTR could be used in typing M. intracellulare isolates [15]

Read more

Summary

Introduction

Mycobacterium intracellulare, a species of the Mycobacterium avium complex, may be the cause of severe lung, lymphatic node, skin and bone/joint infections, as well as bacteriemia. We studied 61 isolates collected in humans between 2001 and 2008, as well as the reference strain, M. intracellulare ATCC 13950. Due to their genetic and phenotypic diversity, epidemiological and pathological studies of non-tuberculous mycobacteria are complex. These bacteria are difficult to eradicate because of their natural resistance to the antibiotics frequently used against tuberculosis. M. intracellulare may be the cause of severe lung, lymphatic node, skin and bone/joint infections, as well as bacteriemia [2].

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.