Abstract
In this paper, novel finite elements that include an arbitrary number of additional nodes on each edge of a quadrilateral element are proposed to achieve compatible connection of neighboring nonmatching meshes in plate and shell analyses. The elements, termed variable-node plate elements, are based on two-dimensional variable-node elements with point interpolation and on the Mindlin---Reissner plate theory. Subsequently the flat shell elements, termed variable-node shell elements, are formulated by further extending the plate elements. To eliminate a transverse shear locking phenomenon, the assumed natural strain method is used for plate and shell analyses. Since the variable-node plate and shell elements allow an arbitrary number of additional nodes and overcome locking problems, they make it possible to connect two nonmatching meshes and to provide accurate solutions in local mesh refinement. In addition, the curvature and strain smoothing methods through smoothed integration are adopted to improve the element performance. Several numerical examples are presented to demonstrate the effectiveness of the elements in terms of the accuracy and efficiency of the analyses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.