Abstract

Skeletal muscle, after spinal cord injury (SCI), becomes highly susceptible to fatigue. Variable-frequency trains (VFTs) enhance force in fatigued human skeletal muscle of able-bodied (AB) individuals. VFTs do this by taking advantage of the "catch-like" property of skeletal muscle. However, mechanisms responsible for fatigue in AB and SCI subjects may not be the same, and the efficacy of VFT stimulation after SCI is unknown. Accordingly, we tested the hypothesis that VFT stimulation would augment torque-time integral in SCI subjects. The quadriceps femoris muscle was stimulated with constant frequency trains (CFTs) (six 200 s square wave pulses separated by 70 ms) or VFTs (a train identical to the CFT, except that the first two pulses were separated by 5 ms) in SCI and AB subjects. After 180 contractions (50% duty cycle), isometric peak torque decreased 44, 56, and 67 percent, in the AB (n = 10), acute SCI (n = 10), and chronic SCI (n = 12) groups, respectively. In fatigued muscle, VFTs enhanced the torque-time integral by 18 percent in AB subjects and 6 percent in chronic SCI patients, and had no effect in acute SCI patients when compared to the corresponding CFT. The much faster rise times in SCI subjects (approximately 80 ms vs. 120 ms in AB subjects) probably contributed to the inability of VFTs to enhance torque-time integrals in SCI patients. The results suggest that the use of VFT stimulation in patients with SCI may not be as efficacious as it is in AB persons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.