Abstract

Microlenses have been implemented in confocal systems successfully as components of aperture arrays and as arrays of objective lenses. The use of the novel technology of variable focal length (VFL) microlenses in the confocal system is investigated. The use of VFL microlenses as an aperture array in conjunction with an optical fiber as a pinhole array is examined. Axial responses of the system where measured and the Full-Width Half Maximum (FWHM) found to be ~16μm. VFL microlenses as an array of objective lenses is investigated with a novel method for scanning in the axial direction presented. By variation of the focal length of the lenses the focal plane can be scanned through the sample without the mechanical movement of the sample or the objective lens, we have named this 'focal scanning'. It is shown that the limiting factor with this type of scanning is the low numerical aperture (NA) of the microlenses available. Both focal scanning and conventional scanning are examined for this experimental set-up.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.