Abstract

As compared with constant respiratory rate (RR) and tidal volume (V(T)) during controlled conventional mechanical ventilation (CV), variable ventilation (VV) using the same breath-to-breath minute volume but variable V(T) and RRs enhances ventilation efficiency in preterm lambs. We hypothesized that if V(T) was adjusted to target permissive hypercarbia, VV would result in more efficient gas exchange without increasing inflammatory and injurious responses in the lung. Preterm lambs at 129 d gestation were anesthetized, tracheotomized, and randomized to either CV (n = 8) or VV (n = 8) using the same initial average V(T) and RR. Lung mechanics and gas exchange were measured intermittently, and average V(T) was adjusted to target partial pressure of arterial carbon dioxide (PaCO2) of 40-50 mm Hg for 3 h. Lung injury and inflammation were assessed from bronchoalveolar lavage fluid, lung tissue, and peripheral blood. VV achieved permissive hypercarbia using a lower average V(T), peak inspiratory pressure, and elastance (increased compliance) as compared with CV. Oxygenation and markers of lung tissue inflammation or injury were not different apart from a lower wet:dry tissue ratio in the VV lungs. VV improves ventilation efficiency and in vivo lung compliance in the ovine preterm lung without increasing lung inflammation or lung injury.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.