Abstract

To evaluate accuracy and noise properties of a novel time-resolved, three-dimensional, three-directional phase contrast sequence with variable velocity encoding (denoted 4D-vPC) on a 3 Tesla MR system, and to investigate potential benefits and limitations of variable velocity encoding with respect to depicting blood flow patterns. A 4D PC-MRI sequence was modified to allow variable velocity encoding (VENC) over the cardiac cycle in all three velocity directions independently. 4D-PC sequences with constant and variable VENC were compared in a rotating phantom with respect to measured velocities and noise levels. Additionally, comparison of flow patterns in the ascending aorta was performed in six healthy volunteers. Phantom measurements showed a linear relationship between velocity noise and velocity encoding. 4D-vPC MRI presented lower noise levels than 4D-PC both in phantom and in volunteer measurements, in agreement with theory. Volunteer comparisons revealed more consistent and detailed flow patterns in early diastole for the variable VENC sequences. Variable velocity encoding offers reduced noise levels compared with sequences with constant velocity encoding by optimizing the velocity-to-noise ratio (VNR) to the hemodynamic properties of the imaged area. Increased VNR ratios could be beneficial for blood flow visualizations of pathology in the cardiac cycle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.