Abstract
Abstract The St Malo region in north‐west France contains migmatites and anatectic granites derived by partial melting of metasedimentary protoliths during Cadomian orogenesis at c. 540 Ma. Previously reported Rb–Sr model ages for muscovite and biotite range from c. 550 to c. 300 Ma, and suggest variable resetting of mineral isotopic systems. These rocks display microscopic evidence for variably intense Cadomian intracrystalline plastic strain but record no obvious evidence of penetrative Palaeozoic regional deformation. 40Ar/39Ar mineral ages have been determined to evaluate better the extent, timing and significance of Palaeozoic overprinting.Eleven muscovite concentrates and one whole‐rock phyllite have been prepared from various units exposed in the St Malo and adjacent Mancellian regions. In the Mancellian region, muscovite from two facies of the Bonnemain Granite Complex record 40Ar/39Ar plateau ages of c. 527 and 521 Ma. An internally discordant 40Ar/39Ar release spectrum characterizes muscovite from protomylonitic granite within the Cadomian Alexain‐Deux Evailles‐Izé Granite Complex, and probably records the effects of Variscan displacement along the North Armorican Shear Zone. Muscovite concentrates from anatectic granite and from Cadomian mylonites along ductile shear zones within the north‐western sector of the St Malo region exhibit internally discordant 40Ar/39Ar release spectra which suggest variable and partial late Palaeozoic rejuvenation. By contrast, muscovite concentrates from samples of variably mylonitic Brioverian metasedimentary rocks exposed within the south‐eastern sector of the St Malo region display internally concordant apparent age spectra which define plateaux of 326–320 Ma. A whole‐rock phyllite sample from Brioverian metasedimentary rocks exposed along the eastern boundary of the St Malo region displays an internally discordant argon release pattern which is interpreted to reflect the effects of a partial late Palaeozoic thermal overprint. Muscovite from the Plélan granite, part of the Variscan Plélan‐Bobital Granite Complex, yields a 40Ar/39Ar plateau age of c. 307 Ma.The 40Ar/39Ar results indicate that Cadomian rocks of the St Malo region have undergone a widespread and variable Palaeozoic (Carboniferous) rejuvenation of intracrystalline argon systems which apparently did not affect the Mancellian region. This rejuvenation was not accompanied by penetrative regional deformation, and was probably of a static thermal–hydrothermal origin. The heat source for rejuvenation was probably either the result of heating during Variscan extension or advection from Variscan granites which are argued to underlie the St Malo region.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.