Abstract

On a changing planet, amphibians must respond to weather events shifting in frequency and magnitude, and to how those temperature and precipitation changes interact with other anthropogenic disturbances that modify amphibian habitat. To understand how drastic changes in environmental conditions affect wood frog tadpoles, we tested five temperature manipulations, including Ambient (water temperatures tracking daily air temperatures), Elevated (+ 3 °C above ambient), Nightly (removal of nightly lows), Spike (+ 6 °C above ambient every third week), and Flux (alternating ambient and + 3 °C weekly) crossed with Low Salt (specific conductivity: 109-207 µS-cm) and High Salt (1900-2000 µS-cm). We replicated each of the ten resulting treatments four times. High-salinity conditions produced larger metamorphs than low-salinity conditions. Tadpole survival was reduced only by the Spike treatment (P = 0.017). Elevated temperatures did not shorten larval periods; time to metamorphosis did not differ among temperature treatments (P = 0.328). We retained 135 recently metamorphosed frogs in outdoor terrestrial enclosures for 10months to investigate larval environment carryover effects. Juvenile frogs grew larger in low-density terrestrial enclosures than high density (P = 0.015) and frogs from Ambient LowSalt larval conditions grew and survived better than frogs from manipulated larval conditions. Frogs from HighSalt larval conditions had lower survival than frogs from LowSalt conditions. Our results suggest that anthropogenic disturbances to larval environmental conditions can affect both larval and post-metamorphic individuals, with detrimental carryover effects of high-salinity larval conditions not emerging until the juvenile life stage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call